HP-Multigrid as Smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part II: Optimization of the Runge-Kutta smoother
نویسندگان
چکیده
Using a detailed multilevel analysis of the complete hp-Multigrid as Smoother algorithm accurate predictions are obtained of the spectral radius and operator norms of the multigrid error transformation operator. This multilevel analysis is used to optimize the coefficients in the semi-implicit Runge-Kutta smoother, such that the spectral radius of the multigrid error transformation operator is minimal under properly chosen constraints. The Runge-Kutta coefficients for a wide range of cell Reynolds numbers and a detailed analysis of the performance of the hp-MGS algorithm are presented. In addition, the computational complexity of the hp-MGS algorithm is investigated. The hp-MGS algorithm is tested on a fourth order accurate space-time discontinuous Galerkin finite element discretization of the advection-diffusion equation for a number of model problems, which include thin boundary layers and highly stretched meshes, and a non-constant advection velocity. For all test cases excellent multigrid convergence is obtained.
منابع مشابه
hp-Multigrid as Smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows: Part I. Multilevel analysis
The hp-Multigrid as Smoother algorithm (hp-MGS) for the solution of higher order accurate space–time discontinuous Galerkin discretizations of advection dominated flows is presented. This algorithm combines p-multigrid with h-multigrid at all p-levels, where the h-multigrid acts as smoother in the p-multigrid. The performance of the hp-MGS algorithm is further improved using semi-coarsening in ...
متن کاملMultigrid Optimization for Space-Time Discontinuous Galerkin Discretizations of Advection Dominated Flows
The goal of this research is to optimize multigrid methods for higher order accurate space-time discontinuous Galerkin discretizations. The main analysis tool is discrete Fourier analysis of twoand three-level multigrid algorithms. This gives the spectral radius of the error transformation operator which predicts the asymptotic rate of convergence of the multigrid algorithm. In the optimization...
متن کاملRobust smoothers for high order discontinuous Galerkin discretizations of advection-diffusion problems
The multigrid method for discontinuous Galerkin discretizations of advection-diffusion problems is presented. It is based on a block Gauss-Seidel smoother with downwind ordering honoring the advection operator. The cell matrices of the DG scheme are inverted in this smoother in order to obtain robustness for higher order elements. Employing a set of experiments, we show that this technique actu...
متن کاملA Study of Multigrid Smoothers Used in Compressible Cfd Based on the Convection Diffusion Equation
We look at multigrid methods for unsteady viscous compressible flows. We specifically target smoothers that can be used in parallel and without computation of a Jacobian, which are particlarly attractive candidates in the context of Discontinuous Galerkin discretizations. In CFD, a plethora of nonlinear smoothers have been suggested which are hard to analyze. Our methodology is to use a linear ...
متن کاملMultigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations
A high-order discontinuous Galerkin finite element discretization and p-multigrid solution procedure for the compressible Navier-Stokes equations are presented. The discretization has an element-compact stencil such that only elements sharing a face are coupled, regardless of the solution space. This limited coupling maximizes the effectiveness of the p-multigrid solver, which relies on an elem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 231 شماره
صفحات -
تاریخ انتشار 2012